首页> 外文OA文献 >A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
【2h】

A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

机译:一种成功完成火箭推进地面试验概率的计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.
机译:推进地面测试设施面临每日挑战,需要安排多个客户进入有限的设施空间并成功完成其推进测试项目。在过去的十年中,NASA的推进测试设施执行了数百次测试,收集了数千秒的测试数据,并且超过了众多测试设施和测试物品组件的功能。已开发出逻辑回归数学建模技术来预测成功完成火箭推进试验的可能性。对数回归模型是一种数学建模方法,可用于描述几个独立的预测变量X(sub 1),X(sub 2),..,X(sub k)与二元或二分因变量Y的关系,其中Y只能是两个可能结果之一,在这种情况下,是完成完整持续时间测试的成功或失败。使用逻辑回归建模并不是什么新鲜事物。但是,使用逻辑回归对推进地面测试设施进行建模是统计技术的一种新颖且独特的应用。这种模型的结果为项目经理提供了对火箭推进地面测试有效性的洞察力和信心。

著录项

  • 作者

    Messer, Bradley;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号